Find the principal values of the following:
1. \(sin^{-1}({-\frac{1}{2}})\)
2. \(cos^{-1}({\frac{\sqrt{3}}{2}})\)
5. \(cos^{-1}({-\frac{1}{2}})\)
7. \(sec^{-1}({\frac{2}{\sqrt 3}})\)
9. \(cos^{-1}({-\frac{1}{\sqrt 2}})\)
Find the values of the following:
11. \(tan^{-1}(1)\)+\(cos^{-1}({-\frac{1}{\sqrt 2}})\)+\(sin^{-1}({-\frac{1}{\sqrt 2}})\).
12. \(cos^{-1}({\frac{1}{\sqrt 2}})\)+2\(sin^{-1}({\frac{1}{\sqrt 2}})\).
(B) \(-\frac{\pi}{2}\le y \le -\frac{\pi}{2}\)
(D) \(-\frac{\pi}{2} < y < -\frac{\pi}{2}\)
1. \(3sin^{-1}{x}=sin^{-1}(3x-4x^3)\), \(x\in[-\frac{1}{2},\frac{1}{2}]\).
2. \(3cos^{-1}{x}=cos^{-1}(4x^3-3x)\), \(x\in[\frac{1}{2},1]\).
Write the following functions in the simplest form:
3. \(tan^{-1}{\frac{\sqrt{1+x^2}-1}{x}}\), \(x\ne {0}\).
4. \(tan^{-1}(\sqrt{\frac{1-cosx}{1+cosx}})\),\(0<x<\pi\).
5. \(tan^{-1}(\frac{cosx-sinx}{cosx+sinx})\), \(-\frac{\pi}{4}<x<\frac{3\pi}{4}\).
6. \(tan^{-1}{\frac{x}{\sqrt{a^2-x^2}}}\), \(|x|<a\).
7. \(tan^{-1}(\frac{3a^2x-x^3}{a^3-3ax^2})\), \(a>0;-\frac{a}{\sqrt3}<x<\frac{a}{\sqrt3}\).
Find the values of each of the following:
8. \(tan^{-1}[2cos(2sin^{-1}{\frac{1}{2}})]\).
Find the values of each of the expressions in Exercises 10 to 15.
10. \(sin^{-1}(sin{\frac{2\pi}{3}})\).
11. \(tan^{-1}(tan{\frac{3\pi}{4}})\).
12. \(tan(sin^{-1}{\frac{3}{5}}+cot^{-1}{\frac{3}{2}})\).
13. \(cos^{-1}(cos{\frac{7\pi}{6}})\).
14. \(sin(\frac{\pi}{3}-sin^{-1}(-\frac{1}{2}))\).
Find the value of the following:
1. \(cos^{-1}(cos\frac{13\pi}{6})\).
2. \(tan^{-1}(tan\frac{7\pi}{6})\).
3. \(2sin^{-1}{\frac{3}{5}}\)\(=tan^{-1}{\frac{24}{7}}\).
4. \(sin^{-1}{\frac{8}{17}}+sin^{-1}{\frac{3}{5}}\)\(=tan^{-1}{\frac{77}{36}}\).
5. \(cos^{-1}{\frac{4}{5}}+cos^{-1}{\frac{12}{13}}\)\(=cos^{-1}{\frac{33}{65}}\).
6. \(cos^{-1}{\frac{12}{13}}+sin^{-1}{\frac{3}{5}}\)\(=sin^{-1}{\frac{56}{65}}\).
7. \(tan^{-1}{\frac{63}{16}}=sin^{-1}{\frac{5}{13}}\)\(+cos^{-1}{\frac{3}{5}}\).
8. \(tan^{-1}{\sqrt{x}}=\frac{1}{2}cos^{-1}{\frac{1-x}{1+x}}\).
Solve the following equations:
11. \(2tan^{-1}(cosx)=tan^{-1}(2cosecx)\).
12. \(tan^{-1}{\frac{1-x}{1+x}}\)\(=\frac{1}{2}tan^{-1}x,\;(x>0)\)
13. \(sin(tan^{-1}x),|x|<1\) is equal to:
(A) \(\frac{x}{\sqrt{1-x^2}}\)
(B) \(\frac{1}{\sqrt{1-x^2}}\)
(C) \(\frac{1}{\sqrt{1+x^2}}\)
(D) \(\frac{x}{\sqrt{1+x^2}}\)
14. \(sin^{-1}(1-x)-2sin^{-1}x\)\(=\frac{\pi}{2}\), then x is equal to: