Complex Numbers and Quadratic Equations Class 11 Multiple Choice Test Resources Ncert Solutions Assignments MCQ’s

# Category: Complex Numbers and Quadratic Equations

## Complex Numbers and Quadratic Equations Class 11 Assignments

Class 11 Complex Numbers and Quadratic Equations Assignments Complex Numbers and Quadratic Equations Assignments Assignment 01 (CM23M110401) Answer

## If ((\frac{1+i}{1-i})^m=1), then find the least positive integral value of m.

14. If ((frac{1+i}{1-i})^m=1), then find the least positive integral value of m. Complex Numbers and Quadratic Equations Miscellaneous

## If (a + ib) (c + id) (e + if) (g + ih) = A + iB, then show that (a² + b²) (c² + d²) (e² + f²) (g² + h²) = A² + B².

13. If (a + ib) (c + id) (e + if) (g + ih) = A + iB,

## Find the number of non-zero integral solutions of the equation (|1-i|^x=2^x).

12. Find the number of non-zero integral solutions of the equation (|1-i|^x=2^x). Complex Numbers and Quadratic Equations Miscellaneous

## If α and β different complex numbers with |β|=1, then find (|\frac{β-α}{1-\bar{α}β}|)

11. If α and β different complex numbers with |β|=1, then find (|frac{β-α}{1-bar{α}β}|) Complex Numbers and Quadratic Equations

## If ((x+iy)^3=u+iv), then show that (\frac{u}{x}+\frac{v}{y}=4(x^2-y^2)).

10. If ((x+iy)^3=u+iv), then show that (frac{u}{x}+frac{v}{y}=4(x^2-y^2)). Complex Numbers and Quadratic Equations Miscellaneous Exercise Previous Next Class 11

## Find the modulus of (\frac{1+i}{1-i}-\frac{1-i}{1+i}).

9. Find the modulus of (frac{1+i}{1-i}-frac{1-i}{1+i}). Complex Numbers and Quadratic Equations Miscellaneous Exercise Previous Next Class 11 Complex

## Find the real numbers x and y if (x – iy) (3 + 5i) is the conjugate of –6 – 24i.

8. Find the real numbers x and y if (x – iy) (3 + 5i) is the conjugate

## Let (z_1=2-i, z_2=-2+i). Find (i) (Re(\frac{z_1 z_2}{\bar{z_1}}))

7. Let (z_1=2-i, z_2=-2+i). Find (i) (Re(frac{z_1 z_2}{bar{z_1}})) (ii) (Im(frac{1}{z_1 bar{z_1}})) Complex Numbers and Quadratic Equations Miscellaneous Exercise