18. If (A=begin{bmatrix}0 & -tan{αover 2} \ tan{αover 2} & 0end{bmatrix}) and I is the identity matrix of
Category: Matrices
If (A=\begin{bmatrix}3 & -2 \ 4 & -2 find k so that (A^2=kA-2I).If (A=\begin{bmatrix}3 & -2 \ 4 & -2
17. If (A=begin{bmatrix}3 & -2 \ 4 & -2end{bmatrix}) and (I=begin{bmatrix}1 & 0 \ 0 & 1end{bmatrix}), find
If (A=\begin{bmatrix}1 & 0 & 2 \ 0 & 2 & 1 \ 2 & 0 & 3 prove that (A^3-6A^2+7A+2I=0)
16. If (A=begin{bmatrix}1 & 0 & 2 \ 0 & 2 & 1 \ 2 & 0 &
Find (A^2-5A+6I), if (A=\begin{bmatrix}2 & 0 & 1 \ 2 & 1 & 3
15. Find (A^2-5A+6I), if (A=begin{bmatrix}2 & 0 & 1 \ 2 & 1 & 3 \ 1 &
Show that (i) (\begin{bmatrix}5 & -1 \ 6 & 7 \end{bmatrix})(\begin{bmatrix}2 & 1 \ 3
14. Show that (i) (begin{bmatrix}5 & -1 \ 6 & 7 end{bmatrix})(begin{bmatrix}2 & 1 \ 3 & 4
If (F(x)=\begin{bmatrix}cosx & -sinx & 0 \ sinx & cosx & 0 \ 0 & 0 & 1 \end{bmatrix}), show that (F(x)F(y)=F(x+y)).
13. If (F(x)=begin{bmatrix}cosx & -sinx & 0 \ sinx & cosx & 0 \ 0 & 0 &
Given 3(\begin{bmatrix}x & y \ z & w find the values of x, y, z and w.Given 3(\begin{bmatrix}x & y \ z & w
12. Given 3(begin{bmatrix}x & y \ z & w end{bmatrix})=(begin{bmatrix}x & 6 \ -1 & w end{bmatrix})+(begin{bmatrix}4 &
If (x\begin{bmatrix}2 \ 3 \end{bmatrix})+(y\begin{bmatrix}-1 \ 1 \end{bmatrix})=(\begin{bmatrix}10 \ 5
11. If (xbegin{bmatrix}2 \ 3 end{bmatrix})+(ybegin{bmatrix}-1 \ 1 end{bmatrix})=(begin{bmatrix}10 \ 5 end{bmatrix}), find the values of x and
Solve the equation for x, y, z and t, if 2(\begin{bmatrix}x & z \ y & t
10. Solve the equation for x, y, z and t, if 2(begin{bmatrix}x & z \ y & t
Find x and y, if 2(\begin{bmatrix}1 & 3 \ 0 & x \end{bmatrix}) + (\begin{bmatrix}y & 0 \ 1 & 2
9. Find x and y, if 2(begin{bmatrix}1 & 3 \ 0 & x end{bmatrix}) + (begin{bmatrix}y & 0