(iii) Write the elements \(a_{13}, a_{21}, a_{33}, a_{24}, a_{23}\).
4. Construct a 2 × 2 matrix, \(A=[a_{ij}]\), whose elements are given by :
(i) \(a_{ij}={{(i+j)^2} \over 2}\)
(iii) \(a_{ij}={{(i+2j)^2} \over 2}\).
5. Construct a 3 × 4 matrix, whose elements are given by :
(i) \(a_{ij}={1 \over 2}|-3i+j|\)
6. Find the values of x, y and z from the following equations :
(i) \(\begin{bmatrix}4 & 3 \\ x & 5 \end{bmatrix}\)=\(\begin{bmatrix}y & z \\ 1 & 5 \end{bmatrix}\)
(iii) \(\begin{bmatrix}x+y+z \\ x+z \\ y+z\end{bmatrix}\)=\(\begin{bmatrix}9\\ 5 \\7 \end{bmatrix}\)
7. Find the value of a, b, c and d from the equation :
8. \(A = {[a_{ij}]}_{m×n}\) is a square matrix, if
(A) m < n
(B) m > n
(C) m = n
(D) None of these
9. Which of the given values of x and y make the following pair of matrices equal
(A) \(x={-1\over 3}, y=7\)
(B) Not possible to find
(C) \(y=7, x={-2\over 3}\)
(D) \(x={-1\over 3}, y={-2\over 3}\)
10. The number of all possible matrices of order 3 × 3 with each entry 0 or 1 is :
(i) A + B
(ii) A – B
(iii) 3A – C
(iv) AB
(v) BA
(i) \(\begin{bmatrix}a & b \\ -b & a \end{bmatrix}\)+\(\begin{bmatrix}a & b \\ b & a \end{bmatrix}\)
3. Compute the indicated products:
(i) \(\begin{bmatrix}a & b \\ -b & a \end{bmatrix}\)\(\begin{bmatrix}a & -b \\ b & a \end{bmatrix}\)
(ii) \(\begin{bmatrix}1 \\ 2 \\ 3 \end{bmatrix}\)\(\begin{bmatrix}2 & 3 & 4 \end{bmatrix}\)
10. Solve the equation for x, y, z and t, if
15. Find \(A^2-5A+6I\), if \(A=\begin{bmatrix}2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0\end{bmatrix}\)
19. A trust fund has Rs 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of:
(a) Rs 1800
(b) Rs 2000
20. The bookshop of a particular school has 10 dozen chemistry books, 8 dozen
physics books, 10 dozen economics books. Their selling prices are Rs 80, Rs 60
and Rs 40 each respectively. Find the total amount the bookshop will receive from selling all the books using matrix algebra.
Assume X, Y, Z, W and P are matrices of order 2 × n, 3 × k, 2 × p, n × 3 and p × k,
respectively. Choose the correct answer in Exercises 21 and 22.
21. The restriction on n, k and p so that PY + WY will be defined are:
(A) k = 3, p = n
(B) k is arbitrary, p = 2
(C) p is arbitrary, k = 3
(D) k = 2, p = 3
22. If n = p, then the order of the matrix 7X – 5Z is:
(A) p × 2
(B) 2 × n
(C) n × 3
(D) p × n
1. Find the transpose of each of the following matrices:
(i) \(\begin{bmatrix}5 \\ {1\over 2}\\-1 \end{bmatrix}\)
(ii) \(\begin{bmatrix}1 &-1 \\ 2 & 3 \end{bmatrix}\)
(iii) \(\begin{bmatrix}-1 & 5 & 6 \\ {\sqrt 3} & 5 & 6 \\2 & 3 & -1\end{bmatrix}\)
5. For the matrices A and B, verify that (AB)′ = B′A′, where
(i) \(A=\begin{bmatrix}1 \\ -4 \\ 3 \end{bmatrix}\), \(B=\begin{bmatrix}-1 & 2 & 1\end{bmatrix}\)
(ii) \(A=\begin{bmatrix}0 \\ 1 \\ 2 \end{bmatrix}\), \(B=\begin{bmatrix}1 & 5 & 7\end{bmatrix}\)
6. (i) If \(A=\begin{bmatrix}cosα & sinα \\ -sinα & cosα \end{bmatrix}\), then verify that A’A=I.
(ii) If \(A=\begin{bmatrix}sinα & cosα \\ -cosα & sinα \end{bmatrix}\), then verify that A’A=I.
8. For the matrix \(A=\begin{bmatrix}1 & 5 \\ 6 & 7 \end{bmatrix}\), verify that
(i) (A+A’) is a symmetric matrix
(ii) (A-A’) is a skew symmetric matrix.
10. Express the following matrices as the sum of a symmetric and a skew symmetric
matrix:
(i) \(\begin{bmatrix}3 & 5 \\ 1 & -1 \end{bmatrix}\)
(ii) \(\begin{bmatrix}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}\)
(iii) \(\begin{bmatrix}3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2 \end{bmatrix}\)
(iv) \(\begin{bmatrix}1 & 5 \\ -1 & 2 \end{bmatrix}\).
Choose the correct answer in the Exercises 11 and 12.
11. If A, B are symmetric matrices of same order, then AB – BA is a
(A) Skew symmetric matrix
(B) Symmetric matrix
(C) Zero matrix
(D) Identity matrix
1. If A and B are symmetric matrices, prove that AB–BA is a skew symmetric matrix.
5. If \(A=\begin{bmatrix}3&1 \\ -1&2\end{bmatrix}\), show that \(A^2-5A+7I=0\).
9. If \(A=\begin{bmatrix}α&β \\ γ &-α\end{bmatrix}\) is such that \(A^2=I\), then
(A) \(1+α^2+βγ=0\)
(B) \(1-α^2+βγ=0\)
(C) \(1-α^2-βγ=0\)
(D) \(1+α^2-βγ=0\).
10. If the matrix A is both symmetric and skew symmetric, then
(A) A is a diagonal matrix
(B) A is a zero matrix
(C) A is a square matrix
(D) None of these
11. If A is square matrix such that \(A^2=A\), then \((I+A)^3–7A\) is equal to
(A) A
(B) I–A
(C) I
(D) 3A