4. (i) Find equation of line joining (1, 2) and (3, 6) using determinants. Determinants Exercise 4.2 Previous
Category: Ncert
Find values of k if area of triangle is 4 sq. units and vertices are: (i) (k, 0), (4, 0), (0, 2)
3. Find values of k if area of triangle is 4 sq. units and vertices are: (i) (k,
Show that points A(a, b+c), B(b, c+a), C(c, a+b) are collinear.
2. Show that points A(a, b+c), B(b, c+a), C(c, a+b) are collinear. Determinants Exercise 4.2 Previous Next Class
Find area of the triangle with vertices at the point given in each of the following: (i) (1,0), (6,0), (4,3)
1. Find area of the triangle with vertices at the point given in each of the following: (i)
If (\begin{vmatrix}x & 2 \18 & x \end{vmatrix})=(\begin{vmatrix}6 & 2 \18 & 6 \end{vmatrix}), then x is equal to:
8. If (begin{vmatrix}x & 2 \18 & x end{vmatrix})=(begin{vmatrix}6 & 2 \18 & 6 end{vmatrix}), then x is
Find values of x, if (\begin{vmatrix}2 & 4 \5 & 1 \end{vmatrix})=(\begin{vmatrix}2x & 4 \6 & x \end{vmatrix})
7. Find values of x, if (i) (begin{vmatrix}2 & 4 \5 & 1 end{vmatrix})=(begin{vmatrix}2x & 4 \6 &
If (A=\begin{vmatrix}1 & 1 & -2 \ 2 & 1 & -3 \ 5 & 4 & -9 \end{vmatrix}), find |A|.
6. If (A=begin{vmatrix}1 & 1 & -2 \ 2 & 1 & -3 \ 5 & 4 &
Evaluate the determinants (\begin{vmatrix}3 & -1 & -2 \ 0 & 0 & -1 \ 3 & -5 & 0 \end{vmatrix})
5. Evaluate the determinants (i) (begin{vmatrix}3 & -1 & -2 \ 0 & 0 & -1 \ 3
If (A=\begin{vmatrix}1 & 0 & 1 \ 0 & 1 & 2 \ 0 & 0 & 4 \end{vmatrix}), then show that |3A|=27|A|.
4. If (A=begin{vmatrix}1 & 0 & 1 \ 0 & 1 & 2 \ 0 & 0 &
If (A=\begin{bmatrix}1 & 2 \ 4 & 2\end{bmatrix}), then show that |2A|=4|A|.
3. If (A=begin{bmatrix}1 & 2 \ 4 & 2end{bmatrix}), then show that |2A|=4|A|. Determinants Exercise 4.1 Previous Next