5. If area of triangle is 35 sq units with vertices (2, –6), (5, 4) and (k, 4).
Category: class 12
Find equation of line joining (1, 2) and (3, 6) using determinants.
4. (i) Find equation of line joining (1, 2) and (3, 6) using determinants. Determinants Exercise 4.2 Previous
Find values of k if area of triangle is 4 sq. units and vertices are: (i) (k, 0), (4, 0), (0, 2)
3. Find values of k if area of triangle is 4 sq. units and vertices are: (i) (k,
Show that points A(a, b+c), B(b, c+a), C(c, a+b) are collinear.
2. Show that points A(a, b+c), B(b, c+a), C(c, a+b) are collinear. Determinants Exercise 4.2 Previous Next Class
Find area of the triangle with vertices at the point given in each of the following: (i) (1,0), (6,0), (4,3)
1. Find area of the triangle with vertices at the point given in each of the following: (i)
If (\begin{vmatrix}x & 2 \18 & x \end{vmatrix})=(\begin{vmatrix}6 & 2 \18 & 6 \end{vmatrix}), then x is equal to:
8. If (begin{vmatrix}x & 2 \18 & x end{vmatrix})=(begin{vmatrix}6 & 2 \18 & 6 end{vmatrix}), then x is
Find values of x, if (\begin{vmatrix}2 & 4 \5 & 1 \end{vmatrix})=(\begin{vmatrix}2x & 4 \6 & x \end{vmatrix})
7. Find values of x, if (i) (begin{vmatrix}2 & 4 \5 & 1 end{vmatrix})=(begin{vmatrix}2x & 4 \6 &
If (A=\begin{vmatrix}1 & 1 & -2 \ 2 & 1 & -3 \ 5 & 4 & -9 \end{vmatrix}), find |A|.
6. If (A=begin{vmatrix}1 & 1 & -2 \ 2 & 1 & -3 \ 5 & 4 &
Evaluate the determinants (\begin{vmatrix}3 & -1 & -2 \ 0 & 0 & -1 \ 3 & -5 & 0 \end{vmatrix})
5. Evaluate the determinants (i) (begin{vmatrix}3 & -1 & -2 \ 0 & 0 & -1 \ 3
If (A=\begin{vmatrix}1 & 0 & 1 \ 0 & 1 & 2 \ 0 & 0 & 4 \end{vmatrix}), then show that |3A|=27|A|.
4. If (A=begin{vmatrix}1 & 0 & 1 \ 0 & 1 & 2 \ 0 & 0 &