4. For what values of x: (A=begin{bmatrix}1&2&1end{bmatrix}) (begin{bmatrix}1&2&0 \2&0&1\1&0&2 end{bmatrix})(begin{bmatrix}0\2\x end{bmatrix}=O?) Previous Next Class 12 Matrices Miscellaneous Exercise
Category: Matrices
Find the values of x, y, z if the matrix (A=\begin{bmatrix}0 & 2y & z \ x & y & -z \ x & -y & z
3. Find the values of x, y, z if the matrix (A=begin{bmatrix}0 & 2y & z \ x
Show that the matrix B’AB is symmetric or skew symmetric according as A is symmetric or skew symmetric.
2. Show that the matrix B’AB is symmetric or skew symmetric according as A is symmetric or skew
If A and B are symmetric matrices, prove that AB–BA is a skew symmetric matrix.
1. If A and B are symmetric matrices, prove that AB–BA is a skew symmetric matrix. Previous Next
If (A=\begin{bmatrix}cosα & -sinα \ sinα & cosα \end{bmatrix}), then A+A’=I, if the value of α is:
12. If (A=begin{bmatrix}cosα & -sinα \ sinα & cosα end{bmatrix}), then A+A’=I, if the value of α is:
If A, B are symmetric matrices of same order, then AB – BA is a
11. If A, B are symmetric matrices of same order, then AB – BA is a (A) Skew
Express the following matrices as the sum of a symmetric and a skew symmetric matrix: (\begin{bmatrix}3 & 5 \ 1 & -1
10. Express the following matrices as the sum of a symmetric and a skew symmetricmatrix: (i) (begin{bmatrix}3 &
Find ({1\over 2}(A+A’)) and ({1\over 2}(A-A’)), when
9. Find ({1over 2}(A+A’)) and ({1over 2}(A-A’)), when (A=begin{bmatrix}0 & a & b \ -a & 0 &
For the matrix (A=\begin{bmatrix}1 & 5 \ 6 & 7 verify that (A+A’) is a symmetric matrix
8. For the matrix (A=begin{bmatrix}1 & 5 \ 6 & 7 end{bmatrix}), verify that (i) (A+A’) is a
Show that the matrix (A=\begin{bmatrix}1 & -1 & 5 \ -1 & 2 & 1\5 & 1 & 3 \end{bmatrix}) is a symmetric matrix.
7. (i) Show that the matrix (A=begin{bmatrix}1 & -1 & 5 \ -1 & 2 & 1\5 &