5. Evaluate the determinants (i) (begin{vmatrix}3 & -1 & -2 \ 0 & 0 & -1 \ 3
Category: Determinants
If (A=\begin{vmatrix}1 & 0 & 1 \ 0 & 1 & 2 \ 0 & 0 & 4 \end{vmatrix}), then show that |3A|=27|A|.
4. If (A=begin{vmatrix}1 & 0 & 1 \ 0 & 1 & 2 \ 0 & 0 &
If (A=\begin{bmatrix}1 & 2 \ 4 & 2\end{bmatrix}), then show that |2A|=4|A|.
3. If (A=begin{bmatrix}1 & 2 \ 4 & 2end{bmatrix}), then show that |2A|=4|A|. Determinants Exercise 4.1 Previous Next
Evaluate the determinants in Exercise 1 and 2. (\begin{vmatrix}cosθ & -sinθ \ sinθ & cosθ\end{vmatrix})Evaluate the determinants in Exercise 1 and 2.
2. (i) (begin{vmatrix}cosθ & -sinθ \ sinθ & cosθend{vmatrix}) (ii) (begin{vmatrix}x^2-x+1 & x-1 \ x+1 & x+1end{vmatrix}) Determinants
Evaluate the determinants in Exercise 1 and 2. (\begin{vmatrix}2 & 4 \ -5 & -1\end{vmatrix})
Evaluate the determinants in Exercise 1 and 2. 1. (begin{vmatrix}2 & 4 \ -5 & -1end{vmatrix}) Determinants Exercise