chillimath.com

chillimath

Ncert Solutions for Class 12

 Continuity and Differentiability

 Continuity and Differentiability

Miscellaneous Exercise

Differentiate w.r.t. x the function in Exercises 1 to 11.

1. \(\left(3x^2-9x+5\right)^9\).

2. \({sin}^3{x}+{cos}^6{x}\).

3. \(\left(5x\right)^{3cos{2}x}\).

4. \({sin}^{-1}{\left(x\sqrt x\right)}\),\(0\le\ x\le1\).

5. \(\frac{{cos}^{-1}{\frac{x}{2}}}{\sqrt{2x+7}}\),\(-2<x<2\).

6. \({cot}^{-1}{\left[\frac{\sqrt{1+sin{x}}+\sqrt{1-sin{x}}}{\sqrt{1+sin{x}}-\sqrt{1-sin{x}}}\right]}\),\(0<x<\frac{\pi}{2}\).

7. \(\left(log{x}\right)^{log{x}}\), \(x>1\).

8. \(cos{\left(acos{x}+bsin{x}\right)}\), for some constant a and b.

9. \(\left(sin{x}-cos{x}\right)^{\left(sin{x}-cos{x}\right)}\), \(\frac{\pi}{4}<x<\frac{3\pi}{4}\).

10. \(x^x+x^a+a^x+a^a\), for some fixed a>0 and x>0.

11. \(x^{x^2-3}+\left(x-3\right)^{x^2}\), for x>3.

12. Find \(\frac{dy}{dx}\), if \(y=12\left(1-cos{t}\right)\),\(x=10\left(t-sin{t}\right)\),\(-\frac{\pi}{2}<t<\frac{\pi}{2}\).

13. Find \(\frac{dy}{dx}\), If \(y={sin}^{-1}{x}+{sin}^{-1}{\sqrt{1-x^2}}\),\(-1\le\ x\le1\).

14. If \(x\sqrt{1+y}+y\sqrt{1+x}=0\), for \(-1<x<1\), prove that \(\frac{dy}{dx}=-\frac{1}{\left(1+x\right)^2}\).

15. If \(\left(x-a\right)^2+\left(y-b\right)^2=c^2\), for some c>0, prove that \(\frac{\left[1+\left(\frac{dy}{dx}\right)^2\right]^\frac{3}{2}}{\frac{d^2y}{dx^2}}\) is a constant independent of a and b.

16. If \(cos{y}=xcos{\left(a+y\right)} \) with \(cos{a}\neq\pm1\), prove that \(\frac{dy}{dx}=\frac{{cos}^2{\left(a+y\right)}}{sin{a}}\).

17. If \(x=a\left(cos{t}+tsin{t}\right) \) and \(y=a\left(sin{t}-tcos{t}\right)\), find \(\frac{d^2y}{dx^2}\).

18. If \(f\left(x\right)=\left|x\right|^3\), show that f”(x) exists for all real x and find it.

19. Using the fact that \(\sin{(A+B)}=\sin{A}\cos{B}+\cos{A}\sin{B}\) and the differentiation, obtain the sum formula for cosines.

20. Does there exist a function which is continuous everywhere but not differentiable at exactly two points? Justify your answer.

21. If \(y=\left|\begin{matrix}f\left(x\right)&g\left(x\right)&h\left(x\right)\\l&m&n\\a&b&c\\\end{matrix}\right|\), prove that \(\frac{dy}{dx}=\left|\begin{matrix}f'(x)&g'(x)&h'(x)\\l&m&n\\a&b&c\\\end{matrix}\right|\).

22. If \(y=e^{a{cos}^{-1}{x}}\), \(-1\le\ x\le1\), show that \(\left(1-x^2\right)\frac{d^2y}{dx^2}-x\frac{dy}{dx}-a^2y=0\).

 Continuity and Differentiability

Exercise 5.1

1. Prove that the function \(f(x)=5x–3\) is continuous at \(x=0\), at \(x=–3\) and at \(x=5\).

2. Examine the continuity of the function \(f(x)=2x^2–1\) at \(x=3\).

3. Examine the following functions for continuity.
(i) \(f(x)=x-5\)
(ii) \(f(x)=\frac{1}{x-5}\),\(x≠5\)
(iii) \(f(x)=\frac{x^2-25}{x+5}\),\(x≠5\)
(iv) \(f(x)=|x-5|\)

4. Prove that the function \(f(x)=x^n\) is continuous at \(x=n\), where n is a positive integer.

5. Is the function f defined by \(f(x)=\begin{cases}x, & \text{if} & x≤1\\ 5, & \text{if} & x>1 \end{cases}\) continuous at \(x=0\)? At \(x=1\)? At \(x=2\)?

Find all points of discontinuity of f, where f is defined by:

6. \(f(x)=\begin{cases}2x+3, & \text{if} & x≤2\\2x-3,  & \text{if} & x>2 \end{cases}\)

7. \(f(x)=\begin{cases}|x|+3, & \text{if} & x≤-3\\-2x,  & \text{if} & -3<x<3\\ 6x+2, & \text{if} & x\ge 3  \end{cases}\)

8. \(f(x)=\begin{cases}\frac{|x|}{x}, & \text{if} & x\ne 0\\0,  & \text{if} & x=0 \end{cases}\)

9. \(f(x)=\begin{cases}\frac{x}{|x|}, & \text{if} & x<0\\-1,  & \text{if} & x\ge 0 \end{cases}\)

10. \(f(x)=\begin{cases}x+1, & \text{if} & x\ge 1\\x^2+1,  & \text{if} & x<1 \end{cases}\)

11. \(f(x)=\begin{cases}x^3-3, & \text{if} & x\le 2\\x^2+1,  & \text{if} & x>2 \end{cases}\)

12. \(f(x)=\begin{cases}x^{10}-1, & \text{if} & x\le 1\\x^2,  & \text{if} & x>1 \end{cases}\)

13. Is the function defined by \(f(x)=\begin{cases}x+5, & \text{if} & x\le 1\\x-5,  & \text{if} & x>1 \end{cases}\) a continuous function ?

Discuss the continuity of the function f, where f is defined by:
14. \(f(x)=\begin{cases}3, & \text{if} & 0≤x≤1\\4,  & \text{if} & 1<x<3\\ 5, & \text{if} & 3≤x≤10\end{cases}\)

15. \(f(x)=\begin{cases}2x, & \text{if} & x<0\\0,  & \text{if} & 0≤x≤1\\ 4x, & \text{if} & x>1\end{cases}\)

16. \(f(x)=\begin{cases}-2, & \text{if} & x≤-1\\2x,  & \text{if} & -1<x≤1\\ 2, & \text{if} & x>1\end{cases}\)

17. Find the relationship between a and b so that the function f defined by:
\(f(x)=\begin{cases}ax+1, & \text{if} & x\le 3\\bx+3,  & \text{if} & x>3 \end{cases}\) is continuous at x=3.

18. For what value of λ is the function defined by \(f(x)=\begin{cases}λ(x^2-2x), & \text{if} & x\le 0\\4x+1,  & \text{if} & x>0 \end{cases}\)  continuous at x=0? What about continuity at x=1?

19. Show that the function defined by \(g(x)=x–[x]\) is discontinuous at all integral points. Here [x] denotes the greatest integer less than or equal to x.

20. Is the function defined by \(f(x)=x^2 –sinx+5\) continuous at \(x=π\)?

21. Discuss the continuity of the following functions:
(a) \(f(x)=sinx+cosx\)
(b) \(f(x)=sinx–cosx\)
(c) \(f(x)=sinx.cosx\)

22. Discuss the continuity of the cosine, cosecant, secant and cotangent functions.

23. Find all points of discontinuity of f, where
\(f(x)=\begin{cases}\frac{sinx}{x}, & \text{if} & x< 0\\x+1,  & \text{if} & x\ge 0 \end{cases}\)

24. Determine if f defined by \(f(x)=\begin{cases}x^2 sin(\frac{1}{x}), & \text{if} & x\ne 0\\0,  & \text{if} & x=0 \end{cases}\) is a continuous function?

25. Examine the continuity of f, where f is defined by \(f(x)=\begin{cases}sinx-cosx, & \text{if} & x\ne 0\\-1,  & \text{if} & x=0 \end{cases}\).

Find the values of k so that the function f is continuous at the indicated point in Exercises 26 to 29.

26. \(f(x)=\begin{cases}\frac{k cosx}{\pi – 2x}, & \text{if} & x\ne \frac{\pi}{2}\\3,  & \text{if} & x=\frac{\pi}{2} \end{cases}\) at \(x=\frac{\pi}{2}\).

27. \(f(x)=\begin{cases}kx^2, & \text{if} & x\le 2 \\3,  & \text{if} & x>2 \end{cases}\) at \(x=2\).

28. \(f(x)=\begin{cases}kx+1, & \text{if} & x\le \pi \\cosx,  & \text{if} & x>\pi \end{cases}\) at \(x=\pi\).

29. \(f(x)=\begin{cases}kx+1, & \text{if} & x\le 5 \\3x-5,  & \text{if} & x>5 \end{cases}\) at \(x=5\).

30. Find the values of a and b such that the function defined by: \(f(x)=\begin{cases}5, & \text{if} & x≤2\\ax+b,  & \text{if} & 2<x<10\\21, & \text{if} & x\ge 10\end{cases}\) is a continuous function.

31. Show that the function defined by \(f(x)=cos(x^2)\) is a continuous function.

32. Show that the function defined by \(f(x)=|cosx|\) is a continuous function.

33. Examine that \(sin|x|\) is a continuous function.

34. Find all the points of discontinuity of f defined by \(f(x)=|x|–|x+1|\).

 Continuity and Differentiability

Exercise 5.2

Differentiate the functions with respect to x in Exercises 1 to 8.

1. \(sin(x^2+5)\)

2. \(cos(sinx)\)

3. \(sin(ax+b)\)

4. \(sec⁡(tan⁡√x )\)

5. \(\frac{sin⁡(ax+b)}{cos⁡(cx+d)}\)

6. \(cos x^3. sin^2⁡(x^5)\)

7. \(2\sqrt{cot⁡(x^2)}\)

8. \(cos⁡(√x)\)

9. Prove that the function f given by \(f(x)=|x–1|, x∈R\) is not differentiable at \(x=1\).

10. Prove that the greatest integer function defined by \(f(x)=[x], 0<x<3\) is not differentiable at x=1 and x=2.