Differentiate w.r.t. x the function in Exercises 1 to 11.
1. \(\left(3x^2-9x+5\right)^9\).
3. \(\left(5x\right)^{3cos{2}x}\).
4. \({sin}^{-1}{\left(x\sqrt x\right)}\),\(0\le\ x\le1\).
5. \(\frac{{cos}^{-1}{\frac{x}{2}}}{\sqrt{2x+7}}\),\(-2<x<2\).
7. \(\left(log{x}\right)^{log{x}}\), \(x>1\).
8. \(cos{\left(acos{x}+bsin{x}\right)}\), for some constant a and b.
9. \(\left(sin{x}-cos{x}\right)^{\left(sin{x}-cos{x}\right)}\), \(\frac{\pi}{4}<x<\frac{3\pi}{4}\).
10. \(x^x+x^a+a^x+a^a\), for some fixed a>0 and x>0.
11. \(x^{x^2-3}+\left(x-3\right)^{x^2}\), for x>3.
13. Find \(\frac{dy}{dx}\), If \(y={sin}^{-1}{x}+{sin}^{-1}{\sqrt{1-x^2}}\),\(-1\le\ x\le1\).
18. If \(f\left(x\right)=\left|x\right|^3\), show that f”(x) exists for all real x and find it.