Differentiate w.r.t. x the function in Exercises 1 to 11.
1. \(\left(3x^2-9x+5\right)^9\).
3. \(\left(5x\right)^{3cos{2}x}\).
4. \({sin}^{-1}{\left(x\sqrt x\right)}\),\(0\le\ x\le1\).
5. \(\frac{{cos}^{-1}{\frac{x}{2}}}{\sqrt{2x+7}}\),\(-2<x<2\).
7. \(\left(log{x}\right)^{log{x}}\), \(x>1\).
8. \(cos{\left(acos{x}+bsin{x}\right)}\), for some constant a and b.
9. \(\left(sin{x}-cos{x}\right)^{\left(sin{x}-cos{x}\right)}\), \(\frac{\pi}{4}<x<\frac{3\pi}{4}\).
10. \(x^x+x^a+a^x+a^a\), for some fixed a>0 and x>0.
11. \(x^{x^2-3}+\left(x-3\right)^{x^2}\), for x>3.
13. Find \(\frac{dy}{dx}\), If \(y={sin}^{-1}{x}+{sin}^{-1}{\sqrt{1-x^2}}\),\(-1\le\ x\le1\).
18. If \(f\left(x\right)=\left|x\right|^3\), show that f”(x) exists for all real x and find it.
1. Prove that the function \(f(x)=5x–3\) is continuous at \(x=0\), at \(x=–3\) and at \(x=5\).
2. Examine the continuity of the function \(f(x)=2x^2–1\) at \(x=3\).
3. Examine the following functions for continuity.
(i) \(f(x)=x-5\)
(ii) \(f(x)=\frac{1}{x-5}\),\(x≠5\)
(iii) \(f(x)=\frac{x^2-25}{x+5}\),\(x≠5\)
(iv) \(f(x)=|x-5|\)
4. Prove that the function \(f(x)=x^n\) is continuous at \(x=n\), where n is a positive integer.
5. Is the function f defined by \(f(x)=\begin{cases}x, & \text{if} & x≤1\\ 5, & \text{if} & x>1 \end{cases}\) continuous at \(x=0\)? At \(x=1\)? At \(x=2\)?
Find all points of discontinuity of f, where f is defined by:
6. \(f(x)=\begin{cases}2x+3, & \text{if} & x≤2\\2x-3, & \text{if} & x>2 \end{cases}\)
7. \(f(x)=\begin{cases}|x|+3, & \text{if} & x≤-3\\-2x, & \text{if} & -3<x<3\\ 6x+2, & \text{if} & x\ge 3 \end{cases}\)
8. \(f(x)=\begin{cases}\frac{|x|}{x}, & \text{if} & x\ne 0\\0, & \text{if} & x=0 \end{cases}\)
9. \(f(x)=\begin{cases}\frac{x}{|x|}, & \text{if} & x<0\\-1, & \text{if} & x\ge 0 \end{cases}\)
10. \(f(x)=\begin{cases}x+1, & \text{if} & x\ge 1\\x^2+1, & \text{if} & x<1 \end{cases}\)
11. \(f(x)=\begin{cases}x^3-3, & \text{if} & x\le 2\\x^2+1, & \text{if} & x>2 \end{cases}\)
12. \(f(x)=\begin{cases}x^{10}-1, & \text{if} & x\le 1\\x^2, & \text{if} & x>1 \end{cases}\)
13. Is the function defined by \(f(x)=\begin{cases}x+5, & \text{if} & x\le 1\\x-5, & \text{if} & x>1 \end{cases}\) a continuous function ?
Discuss the continuity of the function f, where f is defined by:
14. \(f(x)=\begin{cases}3, & \text{if} & 0≤x≤1\\4, & \text{if} & 1<x<3\\ 5, & \text{if} & 3≤x≤10\end{cases}\)
15. \(f(x)=\begin{cases}2x, & \text{if} & x<0\\0, & \text{if} & 0≤x≤1\\ 4x, & \text{if} & x>1\end{cases}\)
16. \(f(x)=\begin{cases}-2, & \text{if} & x≤-1\\2x, & \text{if} & -1<x≤1\\ 2, & \text{if} & x>1\end{cases}\)
17. Find the relationship between a and b so that the function f defined by:
\(f(x)=\begin{cases}ax+1, & \text{if} & x\le 3\\bx+3, & \text{if} & x>3 \end{cases}\) is continuous at x=3.
18. For what value of λ is the function defined by \(f(x)=\begin{cases}λ(x^2-2x), & \text{if} & x\le 0\\4x+1, & \text{if} & x>0 \end{cases}\) continuous at x=0? What about continuity at x=1?
19. Show that the function defined by \(g(x)=x–[x]\) is discontinuous at all integral points. Here [x] denotes the greatest integer less than or equal to x.
20. Is the function defined by \(f(x)=x^2 –sinx+5\) continuous at \(x=π\)?
21. Discuss the continuity of the following functions:
(a) \(f(x)=sinx+cosx\)
(b) \(f(x)=sinx–cosx\)
(c) \(f(x)=sinx.cosx\)
22. Discuss the continuity of the cosine, cosecant, secant and cotangent functions.
23. Find all points of discontinuity of f, where
\(f(x)=\begin{cases}\frac{sinx}{x}, & \text{if} & x< 0\\x+1, & \text{if} & x\ge 0 \end{cases}\)
24. Determine if f defined by \(f(x)=\begin{cases}x^2 sin(\frac{1}{x}), & \text{if} & x\ne 0\\0, & \text{if} & x=0 \end{cases}\) is a continuous function?
25. Examine the continuity of f, where f is defined by \(f(x)=\begin{cases}sinx-cosx, & \text{if} & x\ne 0\\-1, & \text{if} & x=0 \end{cases}\).
Find the values of k so that the function f is continuous at the indicated point in Exercises 26 to 29.
26. \(f(x)=\begin{cases}\frac{k cosx}{\pi – 2x}, & \text{if} & x\ne \frac{\pi}{2}\\3, & \text{if} & x=\frac{\pi}{2} \end{cases}\) at \(x=\frac{\pi}{2}\).
27. \(f(x)=\begin{cases}kx^2, & \text{if} & x\le 2 \\3, & \text{if} & x>2 \end{cases}\) at \(x=2\).
28. \(f(x)=\begin{cases}kx+1, & \text{if} & x\le \pi \\cosx, & \text{if} & x>\pi \end{cases}\) at \(x=\pi\).
29. \(f(x)=\begin{cases}kx+1, & \text{if} & x\le 5 \\3x-5, & \text{if} & x>5 \end{cases}\) at \(x=5\).
30. Find the values of a and b such that the function defined by: \(f(x)=\begin{cases}5, & \text{if} & x≤2\\ax+b, & \text{if} & 2<x<10\\21, & \text{if} & x\ge 10\end{cases}\) is a continuous function.
31. Show that the function defined by \(f(x)=cos(x^2)\) is a continuous function.
32. Show that the function defined by \(f(x)=|cosx|\) is a continuous function.
33. Examine that \(sin|x|\) is a continuous function.
34. Find all the points of discontinuity of f defined by \(f(x)=|x|–|x+1|\).
Differentiate the functions with respect to x in Exercises 1 to 8.
1. \(sin(x^2+5)\)
2. \(cos(sinx)\)
3. \(sin(ax+b)\)
4. \(sec(tan√x )\)
5. \(\frac{sin(ax+b)}{cos(cx+d)}\)
6. \(cos x^3. sin^2(x^5)\)
7. \(2\sqrt{cot(x^2)}\)
8. \(cos(√x)\)
9. Prove that the function f given by \(f(x)=|x–1|, x∈R\) is not differentiable at \(x=1\).
10. Prove that the greatest integer function defined by \(f(x)=[x], 0<x<3\) is not differentiable at x=1 and x=2.