(i) A + B
(ii) A – B
(iii) 3A – C
(iv) AB
(v) BA
(i) \(\begin{bmatrix}a & b \\ -b & a \end{bmatrix}\)+\(\begin{bmatrix}a & b \\ b & a \end{bmatrix}\)
3. Compute the indicated products:
(i) \(\begin{bmatrix}a & b \\ -b & a \end{bmatrix}\)\(\begin{bmatrix}a & -b \\ b & a \end{bmatrix}\)
(ii) \(\begin{bmatrix}1 \\ 2 \\ 3 \end{bmatrix}\)\(\begin{bmatrix}2 & 3 & 4 \end{bmatrix}\)
10. Solve the equation for x, y, z and t, if
15. Find \(A^2-5A+6I\), if \(A=\begin{bmatrix}2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0\end{bmatrix}\)
19. A trust fund has Rs 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of:
(a) Rs 1800
(b) Rs 2000
20. The bookshop of a particular school has 10 dozen chemistry books, 8 dozen
physics books, 10 dozen economics books. Their selling prices are Rs 80, Rs 60
and Rs 40 each respectively. Find the total amount the bookshop will receive from selling all the books using matrix algebra.
Assume X, Y, Z, W and P are matrices of order 2 × n, 3 × k, 2 × p, n × 3 and p × k,
respectively. Choose the correct answer in Exercises 21 and 22.
21. The restriction on n, k and p so that PY + WY will be defined are:
(A) k = 3, p = n
(B) k is arbitrary, p = 2
(C) p is arbitrary, k = 3
(D) k = 2, p = 3
22. If n = p, then the order of the matrix 7X – 5Z is:
(A) p × 2
(B) 2 × n
(C) n × 3
(D) p × n