1. In ΔABC, right-angled at B, AB = 24 cm, BC = 7 cm. Determine:
(i) sin A, cos A
(ii) sin C, cos C
2. In Figure, find tan P – cot R.
3. If sin A = \(\frac{3}{4}\), calculate cos A and tan A.
4. Given 15 cot A = 8, find sin A and sec A.
5. Given sec θ = \(\frac{13}{12}\), calculate all other trigonometric ratios.
6. If ∠A and ∠B are acute angles such that cos A = cos B, then show that ∠A = ∠B.
7. If cot θ = \(\frac{7}{8}\), evaluate:
(i) \(\frac{(1+sinθ)(1-sinθ)}{(1+cosθ)(1-cosθ)}\)
(ii) \(cot^2θ\)
8. If 3 cot A = 4, check whether \(\frac{1-tan^2A}{1+tan^2A}=cos^2 A-sin^2 A \) or not.
9. In triangle ABC, right- angled at B, if tan A = \(\frac{1}{\sqrt{3}}\), find the value of:
(i) sin A cos C + cos A sin C
(ii) cos A cos C – sin A sin C
10. In ΔPQR, right-angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sinP, cosP and tanP.
11. State whether the following are true or false. Justify your answer.
(i) The value of tan A is always less than 1.
(ii) sec A = \(\frac{12}{5}\) for some value of angle A.
(iii) cos A is the abbreviation used for the cosecant of angle A.
(iv) cot A is the product of cot and A.
(v) sin θ = \(\frac{4}{3}\) for some angle θ.