chillimath.com

Arithmetic Progressions Class 10 Multiple Choice Test

/10

Get ready to be challenged

Thank you for answering the multiple choice test


Arithmetic Progressions Class 10 (100501)


General Instruction:

1. There are 10 MCQ’s in the Test.

2. Passing %age is 50.

3. After time gets over, test will be submitted itself.

1 / 10

How do we apply arithmetic progression in solving daily life problems?

a) Calculating monthly expenses.

b) Determining the amount saved over time with fixed deposits.

c) Predicting future population growth.

d) All of the above.

2 / 10

Which term of the arithmetic progression 3, 7, 11, 15, … is 31?

a) 10th term

b) 11th term

c) 12th term

d) 13th term

3 / 10

What is the sum of all the terms from 10 to 90 in an arithmetic progression where the first term is 5 and the common difference is 3?

a) 3000

b) 3100

c) 3200

d) 3300

4 / 10

If a, b, c are in arithmetic progression, then the value of \(\frac{1}{a} + \frac{1}{c}\) is:

a) \(\frac{2}{b}\)

b) \(\frac{2}{c}\)

c) \(\frac{2}{a}\)

d) \(\frac{1}{b}\)

5 / 10

Which of the following situations is best represented by an arithmetic progression?

a) Growth of bacteria population.

b) Depreciation of car value.

c) Annual salary increment.

d) Fluctuating stock prices.

6 / 10

How can we find the sum of the first ‘n’ terms of an arithmetic progression?

a) Using the formula \( S_n = \frac{n}{2} (2a + (n-1)d) \)

b) Adding all ‘n’ terms individually.

c) Multiplying the first and last terms by the number of terms and dividing by 2.

d) Subtracting the last term from the first term.

7 / 10

If the first term of an arithmetic progression is 8 and the 15th term is 68, what is the common difference?

a) 3

b) 4

c) 5

d) 6

8 / 10

How do we apply arithmetic progression in solving daily life problems?

a) Calculating the average age of a group.

b) Determining the total distance traveled by a moving object.

c) Finding the number of years required to repay a loan.

d) All of the above.

9 / 10

In an arithmetic progression, if the sum of the first 10 terms is 120, what is the sum of the next 10 terms?

a) 240

b) 260

c) 280

d) 300

10 / 10

The sum of first n terms of an A.P. is \(3n^2 + 2n\). What is the nth term of the A.P.?

a) 3n

b) 6n + 2

c) 3n + 2

d) 6n

Your score is

0%

Please rate this quiz

Thank you for answering the multiple choice test

Pos.NameScoreDuration
There is no data yet

Resources