1. Find the derivative of the following functions from first principle:
(i) \(-x\) (ii) \((-x)^{-1}\) (iii) \(sin(x+1)\) (iv) \(cos(x-\frac{π}{8}\).
Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers).
2. (x+a)
3. \((px+q)(\frac{r}{x}+s\)
4. \((ax+b)(cx+d)^2\)
5. \(\frac{ax+b}{cx+d}\)
6. \(\frac{1+\frac{1}{x}}{1-\frac{1}{x}}\)
7. \(\frac{1}{ax^2+bx+c}\)
8. \(\frac{ax+b}{px^2+qx+r}\)
9. \(\frac{px^2+qx+r}{ax+b}\)
10. \(\frac{a}{x^4}-\frac{b}{x^2}+cosx\)
11. \(4\sqrt{x}-2\)
12. \((ax+b)^n\)
13. \((ax+b)^n (cx+d)^m\)
14. \(sin(x+a)\)
15. \(cosecx . cotx\)
16. \(\frac{cosx}{1+sinx}\)
17. \(\frac{sinx+cosx}{sinx-cosx}\)
18. \(\frac{secx-1}{secx+1}\)
19. \(sin^n x\)
20. \(\frac{a+b sinx}{c+d cosx}\)
21. \(\frac{sin(x+a)}{cosx}\)
22. \(x^4 (5 sinx-3 cosx)\)
23. \((x^2+1) cosx\)
24. \((ax^2+sinx )(p+q cosx)\)
25. \((x+cosx)(x-tanx)\)
26. \(\frac{4x+5 sinx}{3x+7 cosx}\)
27. \(\frac{x^2 cos(\frac{π}{4})}{sinx}\)
28. \(\frac{x}{1+tanx}\)
29. \((x+secx)(x-tanx)\)
30. \(\frac{x}{sin^n}\)