

Observations of Math Lab Manual Activities for Class 12

1. To verify that the relation R in the set L of all lines in a plane, defined by $R = \{(l, m) : l \perp m\}$ is symmetric but neither reflexive nor transitive.

Observations:

1. In Fig. 1, no line is perpendicular to itself, so the relation $R = \{(l, m) : l \perp m\}$ is not reflexive (is/is not).

2. In Fig. 1, $l_1 \perp l_2$. Is $l_2 \perp l_1$? Yes (Yes/No)

$\therefore (l_1, l_2) \in R \Rightarrow (l_2, l_1) \in R$ (\notin/\in)

Similarly, $l_3 \perp l_1$. Is $l_1 \perp l_3$? Yes (Yes/No)

$\therefore (l_3, l_1) \in R \Rightarrow (l_1, l_3) \in R$ (\notin/\in)

Also, $l_6 \perp l_7$. Is $l_7 \perp l_6$? Yes (Yes/No)

$\therefore (l_6, l_7) \in R \Rightarrow (l_7, l_6) \in R$ (\notin/\in)

\therefore The relation R ...**is**... symmetric (is/is not)

3. In Fig. 1, $l_2 \perp l_1$ and $l_1 \perp l_3$. Is $l_2 \perp l_3$? No (Yes/No)

$\therefore (l_2, l_1) \in R$ and $(l_1, l_3) \in R \Rightarrow (l_2, l_1) \notin R$ (\notin/\in)

\therefore The relation R ...**is not**... transitive (is/is not)

2. To explore the principal value of the function $\sin^{-1} x$ using a unit circle.

Observations:

1. sine function is non-negative in first and second quadrants.

2. For the quadrants 3rd and 4th, sine function is negative.

3. $\theta = \text{arc sin } y \Rightarrow y = \sin \theta$ where $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$.

4. The other domains of sine function on which it is one-one and onto provides range for arc sine function.

3. To verify that for a function f to be continuous at given point x_0 , $\Delta y = |f(x_0 + \Delta x) - f(x_0)|$ is arbitrarily small provided. Δx is sufficiently small.

Observations:

S. No.	Value of increment in x_0	Corresponding increment in y
1.	$ \Delta x_1 = \underline{\underline{9}}$	$ \Delta y_1 = \underline{\underline{3}}$
2.	$ \Delta x_2 = \underline{\underline{8}}$	$ \Delta y_2 = \underline{\underline{2.8}}$
3.	$ \Delta x_3 = \underline{\underline{7}}$	$ \Delta y_3 = \underline{\underline{2.6}}$
4.	$ \Delta x_4 = \underline{\underline{6}}$	$ \Delta y_4 = \underline{\underline{2.3}}$
5.	$ \Delta x_5 = \underline{\underline{5}}$	$ \Delta y_5 = \underline{\underline{2}}$
6.	$ \Delta x_6 = \underline{\underline{4}}$	$ \Delta y_6 = \underline{\underline{1.7}}$
7.	$ \Delta x_7 = \underline{\underline{3}}$	$ \Delta y_7 = \underline{\underline{1.4}}$
8.	$ \Delta x_8 = \underline{\underline{2}}$	$ \Delta y_8 = \underline{\underline{1.1}}$
9.	$ \Delta x_9 = \underline{\underline{1}}$	$ \Delta y_9 = \underline{\underline{0.8}}$

2. So, Δy becomes smaller when Δx becomes smaller.

3. Thus $\lim_{\Delta x \rightarrow 0} \Delta y = 0$ for a continuous function.

4. To understand the concepts of local maxima, local minima and point of inflexion.

Observations:

1. Sign of the slope of the tangent (first derivative) at a point on the curve to the immediate left of A is negative.

2. Sign of the slope of the tangent (first derivative) at a point on the curve to the immediate right of A is positive.

3. Sign of the first derivative at a point on the curve to immediate left of B is negative.

4. Sign of the first derivative at a point on the curve to immediate right of B is positive.

5. Sign of the first derivative at a point on the curve to immediate left of C is positive.

6. Sign of the first derivative at a point on the curve to immediate right of C is negative.
7. Sign of the first derivative at a point on the curve to immediate left of D is positive.
8. Sign of the first derivative at a point on the curve to immediate right of D is negative.
9. Sign of the first derivative at a point immediate left of P is positive and immediate right of P is positive.
10. A and B are points of local minima.
11. C and D are points of local maxima.
12. P is a point of inflexion.

5. To construct an open box of maximum volume from a given rectangular sheet by cutting equal squares from each corner.

Observations:

1. V_1 = Volume of the open box (when $x = 1.6$) = **182.78**.....
2. V_2 = Volume of the open box (when $x = 1.9$) = **190.83**.....
3. V = Volume of the open box (when $x = 2.1$) = **192.44**.....
4. V_3 = Volume of the open box (when $x = 2.2$) = **192.19**.....
5. V_4 = Volume of the open box (when $x = 2.4$) = **189.69**.....
6. V_5 = Volume of the open box (when $x = 3.2$) = **156.67**.....
7. Volume V_1 is than volume V.
8. Volume V_2 is than volume V.
9. Volume V_3 is than volume V.
10. Volume V_4 is than volume V.
11. Volume V_5 is than volume V.

So, Volume of the open box is maximum when $x =$ 2.1.

6. To verify that amongst all the rest angles of the same perimeter, the square has the maximum area.

Observations:

1. Perimeter of each rectangle $R_1, R_2, R_3, R_4, R_5, R_6, R_7$ is 48 cm.
2. Area of the rectangle R_3 < than the area of rectangle R_5 .
3. Area of the rectangle R_6 < than the area of rectangle R_5 .
4. The rectangle R_5 has the dimensions 12 cm \times 12 cm and hence it is a square.
5. Of all the rectangles with same perimeter, the square has the maximum area.

7. To verify geometrically that $\vec{c} \times (\vec{a} + \vec{b}) = \vec{c} \times \vec{a} + \vec{c} \times \vec{b}$.

Observations:

$$|\vec{c}| = |\vec{OA}| = OA = \underline{\quad} 6 \text{ cm} \underline{\quad}$$

$$|\vec{a} + \vec{b}| = |\vec{OC}| = OC = \underline{\quad} 7 \text{ cm} \underline{\quad}$$

$$\text{CL} = \underline{\quad} 4.9 \underline{\quad}$$

$$|\vec{c} \times (\vec{a} + \vec{b})| = \text{Area of parallelogram OAPC} = (OA) (\text{CL}) = \underline{\quad} 29.4 \underline{\quad} \text{ sq. units} \dots \text{(i)}$$

$$|\vec{c} \times \vec{a}| = \text{Area of parallelogram OAQB} = (OA) (\text{BM}) = \underline{\quad} 6 \underline{\quad} \times \underline{\quad} 3.4 \underline{\quad} = \underline{\quad} 20.4 \underline{\quad} \dots \text{(ii)}$$

$$|\vec{c} \times \vec{b}| = \text{Area of parallelogram BQPC} = (OA) (\text{CN}) = \underline{\quad} 6 \underline{\quad} \times \underline{\quad} 1.5 \underline{\quad} = \underline{\quad} 9 \underline{\quad} \dots \text{(iii)}$$

From (i), (ii) and (iii),

$$\text{Area of parallelogram OAPC} = \text{Area of parallelogram OAQB} + \text{Area of parallelogram} = \underline{\quad} 29.4 \underline{\quad}.$$

$$\text{Thus } |\vec{c} \times (\vec{a} + \vec{b})| = |\vec{c} \times \vec{a}| + |\vec{c} \times \vec{b}|$$

$\vec{c} \times \vec{a}, \vec{c} \times \vec{b}$ and $\vec{c} \times (\vec{a} + \vec{b})$ are all in the direction of perpendicular to the plane of paper.

$$\text{Therefore, } \vec{c} \times (\vec{a} + \vec{b}) = \vec{c} \times \vec{a} + \underline{\quad} \vec{c} \times \vec{b} \underline{\quad}.$$

8. To verify that angle in a semi-circle is a right angle, using vector method.

Observations:

By actual measurement.

$$|\overrightarrow{OP}| = |\overrightarrow{OA}| = |\overrightarrow{OB}| = |\overrightarrow{OQ}| = r = a = p = \underline{10 \text{ cm}} \underline{,}$$

$$|\overrightarrow{AP}| = \underline{10\sqrt{2}} \underline{,} |\overrightarrow{BP}| = \underline{10\sqrt{2}} \underline{,} |\overrightarrow{AB}| = \underline{20 \text{ cm}} \underline{.}$$

$$|\overrightarrow{AQ}| = \underline{|\vec{r} + \vec{a}|} \underline{,} |\overrightarrow{BQ}| = \underline{|\vec{r} - \vec{a}|} \underline{}$$

$$|\overrightarrow{AP}|^2 + |\overrightarrow{BP}|^2 = \underline{|\overrightarrow{AB}|^2} \underline{,} |\overrightarrow{AQ}|^2 + |\overrightarrow{BQ}|^2 = \underline{|\overrightarrow{AB}|^2} \underline{}$$

$$\text{So, } \angle APB = \underline{90^\circ} \text{ and } \overrightarrow{AP} \cdot \overrightarrow{BP} = \underline{0} \text{, } \angle AQB = \underline{90^\circ} \text{ and } \overrightarrow{AQ} \cdot \overrightarrow{BQ} = \underline{0} \text{.}$$

Similarly, for points R, S, T, concyclic points

$$\angle ARB = \underline{90^\circ} \text{, } \angle ASB = \underline{90^\circ} \text{, } \angle ATB = \underline{90^\circ} \text{.}$$

i.e., angle in a semi-circle is a right angle.

9. To measure the shortest distance between two skew lines and verify it analytically.

Observations:

$$1. \text{ Coordinates of point P are } \underline{(2,2,0)} \underline{.}$$

$$2. \text{ Coordinates of point Q are } \underline{(7,6,0)} \underline{.}$$

$$3. \text{ Coordinates of point R are } \underline{(1,6,2)} \underline{.}$$

$$4. \text{ Coordinates of point S are } \underline{(6,2,4)} \underline{.}$$

$$5. \text{ Equation of line PQ is } \underline{\frac{x-2}{5} = \frac{y-2}{4} = \frac{z-0}{0}} \underline{.}$$

$$6. \text{ Equation of line RS is } \underline{\frac{x-1}{5} = \frac{y-6}{-4} = \frac{z-2}{2}} \underline{.}$$

Shortest distance between PQ and RS analytically = 2.6 cm .

Shortest distance by actual measurement = 2.59 cm .

The results so obtained are equal (approximately) .

10. To explain the computation of the conditional probability of a given event A, when event B has already occurred, through an example of throwing a pair of dice.

Observations:

1. Outcome(s) favourable to A : (4,4), $n(A) =$ 1.

2. Outcomes favourable to B : (1,4), (2,4), (3,4), (4,4), (5,4), (6,4), (4,1), (4,2), (4,3), (4,5), (4,6),
 $n(B) =$ 11.

3. Outcomes favourable to $A \cap B$: (4,4), $n(A \cap B) =$ 1.

4. $P(A \cap B) =$ $\frac{1}{36}$.

5. $P(A | B) =$ $\frac{P(A \cap B)}{P(B)}$ = $\frac{1}{11}$.

