
METHOD OF CONSTRUCTION

Take a piece of plywood and paste a white paper on it. Fix the wires randomly

on the plywood with the help of nails such that some of them are parallel,

some are perpendicular to each other and some are inclined as shown in

Fig.1.

OBJECTIVE MATERIAL REQUIRED

To verify that the relation R in the set

L of all lines in a plane, defined by

R = {(l, m) : l ⊥ m} is symmetric but

neither reflexive nor transitive.

A piece of plywood, some pieces of

wires (8), nails, white paper,  glue etc.

Activity 1

DEMONSTRATION

1. Let the wires represent the lines l
1
, l

2
, ..., l

8
.

2. l
1
 is perpendicular to each of the lines l

2
, l

3
, l

4
. [see Fig. 1]
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3. l
6
 is perpendicular to l

7
.

4. l
2
 is parallel to l

3
, l

3
 is parallel to l

4
 and l

5
 is parallel to l

8
.

5. (l
1
, l

2
), (l

1
, l

3
), (l

1
, l

4
), (l

6
, l

7
) ∈ R

OBSERVATION

1. In Fig. 1, no line is perpendicular to itself, so the relation

R = {( l, m) :  l ⊥ m} ______ reflexive (is/is not).

2. In Fig. 1, 1 2l l⊥ . Is l
2
 ⊥ l

1 
?

 
______ (Yes/No)

∴ ( l
1
,  l

2
) ∈ R ⇒ ( l

2
,  l

1
) 

 
______ R (∉/∈)

Similarly, l
3
 ⊥ l

1
 . Is l

1
 ⊥ l

3
? _______ (Yes/No)

∴ ( l
3
, l

1
) ∈ R ⇒ ( l

1
, l

3
) 

 
______ R (∉/∈)

Also, l
6
 ⊥ l

7
. Is l

7
 ⊥ l

6
? _______             (Yes/No)

∴ ( l
6
, l

7
) ∈ R ⇒ ( l

7
, l

6
) 

 
______ R (∉/∈)

∴ The relation R .... symmetric (is/is not)

3. In Fig. 1, l
2
 ⊥ l

1
 and l

1
⊥ l

3
 . Is l

2
 ⊥ l

3
? ... (Yes/No)

i.e., (l
2
, l

1
) ∈ R and (l

1 
, l

3
) ∈ R ⇒ (l

2
, l

3
) 

 
______ R (∉/∈)

∴ The relation R ....  transitive (is/is not).

APPLICATION

This activity can be used to check whether a

given relation is an equivalence relation or

not.

NOTE

1. In this case, the relation is

not an equivalence relation.

2. The activity can be repeated

by taking some more wire in

different positions.



METHOD OF CONSTRUCTION

1. Take a cardboard of a convenient size and paste a white chart paper on it.

2. Draw a unit circle with centre O on it.

3. Through the centre of the circle, draw two perpendicular lines X′OX and

YOY′ representing x-axis and y-axis, respectively as shown in Fig. 6.1.

4. Mark the points A, C, B and D, where the circle cuts the x-axis and y-axis,

respectively as shown in Fig. 6.1.

5. Fix two rails on opposite

sides of the cardboard

which are parallel to

y-axis. Fix one steel wire

between the rails such

that the wire can be

moved parallel to x-axis

as shown in Fig. 6.2.

OBJECTIVE MATERIAL REQUIRED

To explore the principal value of

the function sin–1x using a unit

circle.

Cardboard, white chart paper, rails,

ruler, adhesive, steel wires and

needle.

Activity 6
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6. Take a needle of unit

length. Fix one end of

it at the centre of the

circle and the other

end to move freely

along the circle

Fig. 6.2.

DEMONSTRATION

1. Keep the needle at an

arbitrary angle, say x
1

with the positive direction of x-axis. Measure of angle in radian is equal to

the length of intercepted arc of the unit circle.

2. Slide the steel wire between the rails, parallel to x-axis such that the wire

meets with free end of the needle (say P
1
) (Fig. 6.2).

3. Denote the y-coordinate of the point P
1
 as y

1
, where y

1
 is the perpendicular

distance of steel wire from the x-axis of the unit circle giving y
1
 = sin x

1
.

4. Rotate the needle further anticlockwise and keep it at the angle π – x
1
. Find

the value of y-coordinate of intersecting point P
2
 with the help of sliding

steel wire. Value of y-coordinate for the points P
1
 and P

2
 are same for the

different value of angles, y
1
 = sinx

1
 and y

1
 = sin (π – x

1
). This demonstrates

that sine function is not one-to-one for angles considered in first and second

quadrants.

5. Keep the needle at angles – x
1
 and (– π + x

1
), respectively. By sliding down

the steel wire parallel to x-axis, demonstrate that y-coordinate for the points

P
3
 and P

4
 are the same and thus sine function is not one-to-one for points

considered in 3rd and 4th quadrants as shown in Fig. 6.2.
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6. However, the y-coordinate

of the points P
3
 and P

1
 are

different. Move the needle

in anticlockwise direction

starting from 
2

π
−  to 

2

π
 and

look at the behaviour of

y-coordinates of points P
5
,

P
6
, P

7
 and P

8
 by sliding the

steel wire parallel to

x-axis accordingly. y-co-

ordinate of points P
5
, P

6
, P

7

and P
8
 are different (see

Fig. 6.3). Hence, sine

function is one-to-one in

the domian ,
2 2

π π 
−  

 and its range lies between – 1 and 1.

7. Keep the needle at any arbitrary angle say θ lying in the interval ,
2 2

π π 
−  

and denote the y-coordi-

nate of the intersecting

point P
9
 as y. (see Fig. 6.4).

Then y = sin θ or θ = arc

sin–1y) as sine function is

one-one and onto in the

domain ,
2 2

π π 
−  

 and

range [–1, 1]. So, its

inverse arc sine function

exist. The domain of arc

sine function is [–1, 1] and
Fig. 6.4
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range is ,
2 2

π π 
−  

. This range is called the principal value of arc sine

function (or sin–1 function).

OBSERVATION

1. sine function is non-negative in _________ and __________ quadrants.

2. For the quadrants 3rd and 4th, sine function is _________.

3. θ = arc sin y ⇒ y  = ________ θ where 
2

π
− ≤ θ ≤  ________.

4. The other domains of sine function on which it is one-one and onto provides

_________ for arc sine function.

APPLICATION

This activity can be used for finding the principal value of arc cosine function

(cos–1y).



METHOD OF CONSTRUCTION

1. Paste a white sheet on the hardboard.

2. Draw the curve of the given continuous function as represented in the Fig. 10.

3. Take any point A (x
0
, 0) on the positive side of x-axis and corresponding to

this point, mark the point P (x
0
, y

0
) on the curve.

OBJECTIVE MATERIAL REQUIRED

To verify that for a function f to be

continuous at given point x
0
,

( ) ( )0 0–y f x x f x∆ = + ∆  is

arbitrarily small provided. x∆ is

sufficiently small.

Hardboard, white sheets, pencil,

scale, calculator, adhesive.

Activity 10

Fig. 10

( – )x x0 4D x0 M3(x + x0 3)D M2(x + x0 2)D M1(x + x0 1)DM4
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¢
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DEMONSTRATION

1. Take one more point M
1
 (x

0 
+ ∆x

1
, 0) to the right of A, where ∆x

1
 is an

increment in x.

2. Draw the perpendicular from M
1 
to meet the curve at N

1
. Let  the coordinates

of N
1
 be (x

0
 + ∆x

1
, y

0
 + ∆y

1
)

3. Draw a perpendicular from the point P (x
0
, y

0
) to meet N

1
M

1
 at T

1
.

4. Now measure AM
1
 = 

1x∆ (say) and record it and also measure 1 1 1N T y= ∆ and

record it.

5. Reduce the increment in x to ∆x
2
 (i.e., ∆x

2
 < ∆x

1
) to get another point

M
2 ( )0 2 ,0x x+ ∆ . Get the corresponding point N

2
 on the curve

6. Let the perpendicular PT
1
 intersects N

2
M

2
 at T

2
.

7. Again measure 2 2AM x= ∆ and record it.

Measure 2 2 2N T y= ∆ and record it.

8. Repeat the above steps for some more points so that ∆x becomes smaller

and smaller.

OBSERVATION

S.No. Value of increment Corresponding

in x
0

increment in y

1. 1 1x y∆ = ∆ =

2. 2 2x y∆ = ∆ =

3. 3 3x y∆ = ∆ =

4. 4 4x y∆ = ∆ =

5. 5 5x y∆ = ∆ =
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06. 6 6x y∆ = ∆ =

07. 7 7x y∆ = ∆ =

08. 8 8x y∆ = ∆ =

09. 9 9x y∆ = ∆ =

2. So, y∆ becomes _________ when x∆ becomes smaller.

3. Thus 
0

lim
x∆ →

 y∆ = 0 for a continuous function.

APPLICATION

This activity is helpful in explaining the concept of derivative (left hand or right

hand) at any point on the curve corresponding to a function.



METHOD OF CONSTRUCTION

1. Take a piece of plywood of a convenient size and paste a white paper on it.

2. Take two pieces of wires each of length 40 cm and fix them on the paper on

plywood in the form of x-axis and y-axis.

3. Take another wire of suitable length and bend it in the shape of curve. Fix

this curved wire on the white paper pasted on plywood, as shown in Fig. 14.

OBJECTIVE MATERIAL REQUIRED

To understand the concepts of local

maxima, local minima and point of

inflection.

A piece of plywood, wires,

adhesive, white paper.

Activity 14
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4. Take five more wires each of length say 2 cm and fix them at the points A, C,

B, P and D as shown in figure.

DEMONSTRATION

1. In the figure, wires at the points A, B, C and D represent tangents to the

curve and are parallel to the axis. The slopes of tangents at these points are

zero, i.e., the value of the first derivative at these points is zero. The tangent

at P intersects the curve.

2. At the points A and B, sign of the first derivative changes from negative to

positive. So, they are the points of local minima.

3. At the point C and D, sign of the first derivative changes from positive to

negative. So, they are the points of local maxima.

4. At the point P, sign of first derivative does not change. So, it is a point of

inflection.

OBSERVATION

1. Sign of the slope of the tangent (first derivative) at a point on the curve to

the immediate left of A is _______.

2. Sign of the slope of the tangent (first derivative) at a point on the curve to

the immediate right of A is_______.

3. Sign of the first derivative at a point on the curve to immediate left

of B is _______.

4. Sign of the first derivative at a point on the curve to immediate right

of B is _______.

5. Sign of the first derivative at a point on the curve to immediate left

of C is _______.

6. Sign of the first derivative at a point on the curve to immediate right

of C is _______.

7. Sign of the first derivative at a point on the curve to immediate left

of D is _______.
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8. Sign of the first derivative at a point on the curve to immediate right

of D is _______.

9. Sign of the first derivative at a point immediate left of P is _______ and

immediate right of P is_______.

10. A and B are points of local _______.

11. C and D are points of local _______.

12. P is a point of _______.

APPLICATION

1. This activity may help in explaining the concepts of points of local maxima,

local minima and inflection.

2. The concepts of maxima/minima are useful in problems of daily life such

as making of packages of maximum capacity at minimum cost.



METHOD OF CONSTRUCTION

1. Take a rectangular chart paper of size 20 cm × 10 cm and name it as ABCD.

2. Cut four equal squares each of side x cm from each corner A, B, C and D.

3. Repeat the process by taking the same size of chart papers and different

values of x.

4. Make an open box by folding its flaps using cellotape/adhesive.

OBJECTIVE MATERIAL REQUIRED

To construct an open box of maximum

volume from a given rectangular sheet

by cutting equal squares from each

corner.

Chart papers, scissors, cellotape,

calculator.

Activity 16

DEMONSTRATION

1.  When x = 1, Volume of the box = 144 cm3

2. When x = 1.5, Volume of the box = 178.5 cm3
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3. When x = 1.8, Volume of the box = 188.9 cm3.

4. When x = 2, Volume of the box = 192 cm3.

5. When x = 2.1, Volume of the box = 192.4 cm3.

6. When x = 2.2, Volume of the box = 192.2 cm3.

7. When x = 2.5, Volume of the box = 187.5 cm3.

8. When x = 3, Volume of the box = 168 cm3.

Clearly, volume of the box is maximum when x = 2.1.

OBSERVATION

1.  V
1
 = Volume of the open box ( when x = 1.6) = .................

2. V
2
 = Volume of the open box ( when x = 1.9) = .................

3. V = Volume of the open box ( when x = 2.1) = .................

4. V
3
 = Volume of the open box ( when x = 2.2) = .................

5. V
4
 = Volume of the open box ( when x = 2.4) = .................

6. V
5
 = Volume of the open box ( when x = 3.2) = .................

7. Volume V
1
 is ____________ than volume V.

8. Volume V
2
 is ____________ than volume V.

9. Volume V
3
 is ____________ than volume V.

10. Volume V
4
 is ____________ than volume V.

11. Volume V
5
 is ____________ than volume V.

So, Volume of the open box is maximum when x = ________.

APPLICATION

This activity is useful in explaining the concepts of maxima/minima of functions.

It is also useful in making packages of maximum volume with minimum cost.
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NOTE

Let V denote the volume of the box.

Now V = (20 – 2x) (10 – 2x) x

or V = 200x – 60x2 + 4x3

2V
200 –120 12

d
x x

dx
= + . For maxima or minima, we have,

V
0

d

dx
= ,  i.e., 3x2 – 30x + 50 = 0

i.e., 
30 900 – 600

7.9 or 2.1
6

x
±

= =

Reject x = 7.9.

2

2

V
–120 24

d
x

dx
= +

When x = 2.1, 

2

2

Vd

dx
is negative.

Hence, V should be maximum at x = 2.1.



METHOD OF CONSTRUCTION

1. Take a cardboard of a convenient size and paste a white paper on it.

2. Make rectangles each of perimeter say 48 cm on a chart paper. Rectangles

of different dimensions are as follows:

OBJECTIVE MATERIAL REQUIRED

To verify that amongst all the rect-

angles of the same perimeter, the

square has the maximum area.

Chart paper, paper cutter, scale,

pencil, eraser cardboard, glue.

Activity 18
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R
1
 : 16 cm × 8 cm, R

2
 : 15 cm × 9 cm

R
3
 : 14 cm × 10 cm, R

4
 : 13 cm × 11 cm

R
5
 : 12 cm × 12 cm, R

6
 : 12.5 cm × 11.5 cm

R
7
 : 10.5 cm × 13.5 cm

3. Cut out these rectangles and paste them on the white paper on the cardboard

(see Fig. 18 (i) to (vii)).

4. Repeat step 2 for more rectangles of different dimensions each having

perimeter 48 cm.

5. Paste these rectangles on cardboard.

DEMONSTRATION

1. Area of rectangle of R
1
 = 16 cm × 8 cm = 128 cm2

Area of rectangle R
2
 = 15 cm × 9 cm = 135 cm2

Area of R
3
 = 140 cm2

Area of R
4
 = 143 cm2

Area of R
5
 = 144 cm2

Area of R
6
 = 143.75 cm2

Area of R
7
 = 141.75 cm2

2. Perimeter of each rectangle is same but their area are different. Area of

rectangle R
5
 is the maximum. It is a square of side 12 cm. This can be verified

using theoretical description given in the note.

OBSERVATION

1. Perimeter of each rectangle R
1
, R

2
, R

3
, R

4
, R

4
, R

6
, R

7
 is _________.

2. Area of the rectangle R
3
 ________ than the area of rectangle R

5
.
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3. Area of the rectangle R
6
 _______ than the area of rectangle R

5
.

4. The rectangle R
5
 has the diamensions ______ × ______ and hence it is a

________.

5. Of all the rectangles with same perimeter, the ________ has the maximum

area.

APPLICATION

This activity is useful in explaining the idea

of Maximum of a function. The result is also

useful in preparing economical packages.

Let the length and breadth of rectangle be x and y.

The perimeter of the rectangle P = 48 cm.

2 (x + y) = 48

or 24 or 24 –x y y x+ = =

Let A (x) be the area of rectangle, then

A (x) = xy

= x (24 – x)

= 24x – x2

A′ (x) = 24 – 2x

A′ (x) =  ⇒ 24 – 2x = 0 ⇒ x = 12

A′′  (x) =  – 2

A′′ (12) = – 2, which is negative

Therefore, area is maximum when x = 12

y = x = 24 – 12 = 12

So,  x = y = 12

Hence, amongst all rectangles, the square has the maximum area.

NOTE



METHOD OF CONSTRUCTION

1. Fix a white paper on the cardboard.

2. Draw a line segment OA (= 6 cm, say) and let it represent c
�

.

3. Draw another line segment OB (= 4 cm, say) at an angle (say 60°) with OA.

Let OB a=
���� �

OBJECTIVE MATERIAL REQUIRED

To verify geometrically that

( )c a b c a c b× + = × + ×
� � � � � � �

Geometry box, cardboard, white

paper, cutter, sketch pen, cellotape.

Activity 20
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4. Draw BC (= 3 cm, say) making an angle (say 30°) with OA . Let BC b=
����� ���� �

5. Draw perpendiculars BM, CL and BN.

6. Complete parallelograms OAPC, OAQB and BQPC.

DEMONSTRATION

1. OC OB +BC ,a b= = +
���� ���� ���� � �

and let COA∠ = α .

2. ( )c a b c a b× + = +
� � � � � �

 sin α = area of parallelogram OAPC.

3. c a×
� �

= area of parallelogram OAQB.

4. c b×
� �

= area of parallelogram BQPC.

5. Area of parallelogram OAPC = (OA) (CL)

= (OA) (LN + NC) = (OA) (BM + NC)

= (OA) (BM) + (OA) (NC)

= Area of parallelogram OAQB + Area of parallelogram BQPC

= c a c b+ + ×
� � �� �

So, ( )c a b c b c b× + = × + ×
� � � �� � �

Direction of each of these vectors ( ), andc a b c a c b× + × ×
� � � � � ��

is perpendicular

to the same plane.

So, ( ) .c a b c a c b× + = × + ×
� � � � � ��
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OBSERVATION

OAc =
� ����

= OA = _______

OC OC = ______a b+ = =
� �����

CL = ______

( )c a b× +
� ���

�

= Area of parallelogram OAPC

 = (OA) (CL) = _____________ sq. units (i)

c a×
�

�

= Area of parallelogram OAQB

    = (OA) (BM) = _____ ×  _____ = ______ (ii)

c b×
� �

= Area of parallelogram BQPC

    = (OA) (CN) = _____ ×  _____ = ______ (iii)

From (i), (ii) and (iii),

Area of parallelogram OAPC = Area of parallelgram OAQB + Area of

Parallelgram ________.

Thus ( |c a b c a c b× + = × + ×
� � � �

( ), andc a c b c a b× × × +
� � � � � � �

 are all in the direction of _______  to the plane

of paper.

Therefore ( )c a b c a× + = × +
� � � � �

________.
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APPLICATION

Through the activity, distributive property of vector multiplication over addition

can be explained.

NOTE

This activity can also be per-

formed by taking rectangles

instead of parallelograms.



METHOD OF CONSTRUCTION

1. Take a thick cardboard of size 30 cm × 30 cm.

2. On the cardboard, paste a white paper of the same size using an adhesive.

3. On this paper draw a circle, with centre O and radius 10 cm.

OBJECTIVE MATERIAL REQUIRED

To verify that angle in a semi-circle is

a right angle, using vector method.

Cardboard, white paper, adhesive,

pens, geometry box, eraser, wires,

paper arrow heads.

Activity 21

4. Fix nails at the points O, A, B, P and Q. Join OP, OA, OB, AP, AQ, BQ, OQ

and BP using wires.

5. Put arrows on OA, OB, OP, AP, BP, OQ, AQ and BQ to show them as vectors,

using paper arrow heads, as shown in the figure.

DEMONSTRATION

1. Using a protractor, measure the angle between the vectors APand BP
���� ����

, i.e.,

∠ APB = 90°.
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2. Similarly, the angle between the vectors AQand BQ
���� ����

, i.e., ∠ AQB = 90°.

3. Repeat the above process by taking some more points R, S, T, ... on the

semi-circles, forming vectors AR, BR; AS, BS; AT, BT; ..., etc., i.e., angle

formed between two vectors in a semi-circle is a right angle.

OBSERVATION

By actual measurement.

OP OA OB OQ r a p= = = = = = =
���� ���� ���� ����

 _______ ,

AP
����

= _______ ,    BP
����

 = _______, AB
����

= ______

AQ
����

= _______ , BQ
����

 = _______

2 2

AP BP+
���� ����

= ________,
2 2

AQ BQ+
���� ����

= ________

So, ∠APB = ________ and AP.BP
���� ����

________ ∠AQB = ________ and

AQ.BP
���� ����

 = ________

Similarly, for points R, S, T, ________

∠ARB  = ________,  ∠ASB = ________, ∠ATB = ________, ________

i.e., angle in a semi-circle is a right angle.

APPLICATION

This activity can be used to explain the

concepts of

(i) opposite vectors

(ii) vectors of equal magnitude
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(iii) perpendicular vectors

(iv) Dot product of two vectors.
NOTE

Let OA = OB = a = OP = p

OA – a=
����

�

, OB a=
����

�

, OP p=
����

�

AP – OA OP a p= + = +
���� ���� ����

� �

., BP –p a=
����

� �

.

( ) ( )
2 2

AP. BP . – – 0p a p a p a= + = =
���� ����

� � � � � �

.

( )2
since p a=

� �

So, the angle APB between the vectors AP
����

 and

 BP
����

 is a right angle.

Similarly, AQ. BQ 0=
���� �����

, so, ∠AQB = 90° and so on.



OBJECTIVE MATERIAL REQUIRED

To measure the shortest distance

between two skew lines and verify it

analytically.

A piece of plywood of size

30 cm × 20 cm, a squared paper,

three wooden blocks of size

2cm × 2 cm × 2 cm each and one

wooden block of size  2 cm × 2 cm

× 4 cm, wires of different lengths,

set squares, adhesive, pen/pencil,

etc.

Activity 26

METHOD OF CONSTRUCTION

1. Paste a squared paper on a piece of plywood.

2. On the squared paper, draw two lines OA and OB to represent x-axis,

and y-axis, respectively.

3. Name the three blocks of size 2 cm × 2 cm × 2 cm as I, II and III. Name the

other wooden block of size 2 cm × 2 cm × 4 cm as IV.

4. Place blocks I, II, III such that their base centres are at the points

(2, 2), (1, 6) and (7, 6), respectively, and block IV with its base centre at

(6, 2). Other wooden block of size 2 cm × 2 cm × 4 cm as IV.

5. Place a wire joining the points P and Q, the centres of the bases of the

blocks I and III and another wire joining the centres R and S of the tops of

blocks II and IV as shown in Fig. 26.

6. These two wires represent two skew lines.

7. Take a wire and join it perpendicularly with the skew lines and measure the

actual distance.
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DEMONSTRATION

1. A set-square is placed in such a way that its one perpendicular side is along

the wire PQ.

2. Move the set-square along PQ till its other perpendicular side touches the

other wire.

Fig. 26
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3. Measure the distance between the two lines in this position using set-square.

This is the shortest distance between two skew lines.

4. Analytically, find the equation of line joining P (2, 2, 0) and Q (7, 6, 0) and

other line joining R (1, 6, 2) and S (6, 2, 4) and find S.D. using

( ) ( )2 1 1 2

1 2

–a a b b

b b

⋅ ×

×

��� ��� �� ���

�
. The distance obtained in two cases will be the same.

OBSERVATION

1. Coordinates of point P are ________.

2. Coordinates of point Q are ________.

3. Coordinates of point R are ________.

4. Coordinates of point S are ________.

5. Equation of line PQ is ________.

6. Equation of line RS is ________.

Shortest distance between PQ and RS analytically = ________.

Shortest distance by actual measurement = ________.

The results so obtained are ________.

APPLICATION

This activity can be used to explain the concept of skew lines and of shortest

distance between two lines in space.



OBJECTIVE MATERIAL REQUIRED

To explain the computation of

conditional probability of a given

event A, when event B has already

occurred, through an example of

throwing a pair of dice.

A piece of plywood, white paper

pen/pencil, scale, a pair of dice.

Activity 27

METHOD OF CONSTRUCTION

1. Paste a white paper on a piece of plywood of a convenient size.

2. Make a square and divide it into 36 unit squares of size 1cm each

(see Fig. 27).

3. Write pair of numbers as shown in the figure.

Fig. 27
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DEMONSTRATION

1. Fig. 27 gives all possible outcomes of the given experiment. Hence, it

represents the sample space of the experiment.

2. Suppose we have to find the conditional probability of an event A if an event

B has already occurred, where A is the event “a number 4 appears on both

the dice” and B is the event "4 has appeared on at least one of the dice”i.e,

we have to find P(A | B).

3. From Fig. 27 number of outcomes favourable to A = 1

Number of outcomes favourable to B = 11

Number of outcomes favourable to A ∩ B = 1.

4. (i)  P (B) = 
11

36
,

(ii)  P (A ∩ Β) = 
1

36

(iii) P (A | B) = 
P(A B)

P(B)

∩
= 

1

11
.

OBSERVATION

1. Outcome(s) favourable to A : _________, n (A) = _________.

2. Outcomes favourable to B : _________, n (B) = _________.

3. Outcomes favourable to A ∩ B : _________, n (A ∩ B) = _________.

4. P (A ∩ B) = _________.

5. P (A | B) =  _________ = _________.

APPLICATION

This activity is helpful in understanding the concept of conditional probability,

which is further used in Bayes’ theorem.

NOTE

1. You may repeat this activity by

taking more events such as the

probability of getting a sum 10 when

a doublet has already occurred.

2. Conditional probability

P (A | B) can also be found by first

taking  the sample space of event B

out of the sample space of the

experiment, and then finding the

probability A from it.


