POLYNOMIALS

CM23M100201

Multiple Choice Questions:

1. If one of the zeroes of the quadratic polynomial $(k-1) x^{2}+k x+1$ is (-3), then k equal to :
(a) $\frac{4}{3}$
(b) $-\frac{4}{3}$
(c) $\frac{2}{3}$
(d) $-\frac{2}{3}$
2. The graph of $y=f(x)$ is shown. The number of zeroes of $f(x)$ is :

(a) 3
(b) 1
(c) 0
(d) 2
3. The quadratic polynomial having zeroes as 1 and -2 is :
(a) $x^{2}-x+2$
(b) $x^{2}-x-2$
(c) $x^{2}+x-2$
(d) $x^{2}+x+2$
4. The graph of $y=p(x)$, where $p(x)$ is a polynomial is shown. The number of zeroes of $p(x)$ is :

(a) 3
(b) 4
(c) 1
(d) 2
5. If $(x+1)$ is a factor of $x^{2}-3 a x+3 a-7$, then the value of a is :
(a) 1
(b) -1
(c) 0
(d) -2

Very Short Answer Type Questions :

6. Write the polynomial, the product and sum of whose zeroes are $-\frac{9}{2}$ and $-\frac{3}{2}$ repectively.
7. Write the zeroes of the polynomial $x^{2}-x-6$.

Short Answer Type Questions :

3 marks each
8. If α and β are zeroes of the quadratic polynomial $\mathrm{x}^{2}-6 \mathrm{x}+\mathrm{a}$; find the value of a if $3 \alpha+2 \beta=20$.
9. Find the zeroes of the polynomial $4 x^{2}+5 \sqrt{2} x-3$ and verify the relationship between the zeroes and the coefficients.
10. If α, β are the zeroes of the polynomial $6 y^{2}-7 y+2$, find a quadratic polynomial whose zeroes are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$.

Long Answer Type Questions :

4 marks each
11. If α and β are zeroes of the quadratic polynomial $x^{2}-6 x+a$; find the value of a if $3 \alpha+2 \beta=20$.
12. If α, β are the zeroes of the quadratic polynomial $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-\mathrm{px}+\mathrm{q}$, prove that $\frac{\alpha^{2}}{\beta^{2}}+\frac{\beta^{2}}{\alpha^{2}}=\frac{p^{4}}{q^{2}}-\frac{4 p^{2}}{q}+2$.
13. If α, β are the zeroes of the quadratic polynomial $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+\mathrm{px}+\mathrm{q}$, form a polynomial whose zeroes are $(\alpha+\beta)^{2}$ and $(\alpha-\beta)^{2}$.

